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ABSTRACT

In this paper, we prove Browder’s type convergence theorems for one-

parameter strongly continuous semigroups of nonexpansive mappings in

Banach spaces.

1. Introduction

Let C be a closed convex subset of a Banach space E. A mapping T on C is

called a nonexpansive mapping if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. We

denote by F (T ) the set of fixed points of T . We know that F (T ) is nonempty

in the case that C is weakly compact and has normal structure; see Kirk [13].

See also [1, 5, 10] and others. Fix u ∈ C. Then for each α ∈ (0, 1), there exists

a unique point xα in C satisfying xα = (1 − α)Txα + αu because the mapping

x 7→ (1 − α)Tx + αu is contractive; see [2]. In 1967, Browder [7] proved the

following:

Theorem 1 (Browder [7]): Let C be a closed convex subset of a Hilbert space

E and let T be a nonexpansive mapping on C with a fixed point. Let {αn} be

a sequence in (0, 1) converging to 0. Fix u ∈ C and define a sequence {un} in

C by

un = (1 − αn)Tun + αnu
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for n ∈ N. Then {un} converges strongly to the element of F (T ) nearest to u.

Reich extended this theorem to uniformly smooth Banach spaces in [18].

A family of mappings {T (t) : t ≥ 0} is called a one-parameter strongly con-

tinuous semigroup of nonexpansive mappings on C if the following are satisfied:

(sg 1) for each t ≥ 0, T (t) is a nonexpansive mapping on C;

(sg 2) T (s + t) = T (s) ◦ T (t) for all s, t ≥ 0;

(sg 3) for each x ∈ C, the mapping t 7→ T (t)x from [0,∞) into C is strongly

continuous.

We denote by F (T ) the set of common fixed points of {T (t) : t ≥ 0}. We

know that F (T ) is nonempty if C is weakly compact and has the fixed point

property for nonexpansive mappings; see Bruck [9]. See also [3, 6, 14] and

others. Browder’s type convergence theorems for one-parameter semigroups of

nonexpansive mappings are proved in [21–25] and others. For example, the

following theorem is proved in [25].

Theorem 2 ([25]): Let C be a closed convex subset of a Hilbert space E. Let

{T (t) : t ≥ 0} be a one-parameter strongly continuous semigroup of nonexpan-

sive mappings on C with F (T ) 6= ?. Let τ be a nonnegative real number. Let

{αn} and {tn} be sequences of real numbers satisfying 0 < αn < 1, 0 < τ + tn

and tn 6= 0 for n ∈ N, and limn tn = limn αn/tn = 0. Fix u ∈ C and define a

sequence {un} in C by

un = (1 − αn)T (τ + tn)un + αnu

for n ∈ N. Then {un} converges strongly to the element of F (T ) nearest to u.

This theorem is a generalization of the result in [22]. In [22], we assumed that

τ = 0 and T (0) is the identity mapping on C.

In this paper, we extend Theorem 2 to Banach spaces; see Theorems 3–5 in

Section 4. Proofs of our results are more difficult than that of Theorem 2.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers, and by R
the set of real numbers. For a real number t, we denote by [t] the maximum

integer not exceeding t. It is obvious that for positive real numbers p and q,

0 ≤ p − [p/q]q < q

holds.
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Let {xn} be a sequence in a topological space X . By the Axiom of Choice,

there exist a directed set (D,≤) and a universal subnet {xf(ν) : ν ∈ D} of {xn},

i.e.,

(i) f is a mapping from D into N such that for each n ∈ N there exists ν0 ∈ D

such that ν ≥ ν0 implies f(ν) ≥ n; and

(ii) for each subset A of X , there exists ν0 ∈ D such that either

{xf(ν) : ν ≥ ν0} ⊂ A or {xf(ν) : ν ≥ ν0} ⊂ X \ A holds.

In this paper, we use {xν : ν ∈ D} instead of {xf(ν) : ν ∈ D}, for short. We

know that if a net {xν} is universal, then for every mapping g from X into an

arbitrary set Y , {g(xν)} is also universal. We also know that if X is compact,

then a universal net {xν} always converges. See [12] for details.

Let E be a real Banach space. We denote by E∗ the dual of E. E is called

uniformly convex if for each ε > 0, there exists δ > 0 such that

‖x + y‖

2
< 1 − δ

for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε. E is said to be smooth or

said to have a Gâteaux differentiable norm if the limit

lim
t→0

‖x + ty‖ − ‖x‖

t

exists for each x, y ∈ E with ‖x‖ = ‖y‖ = 1. E is said to have a uniformly

Gâteaux differentiable norm if for each y ∈ E with ‖y‖ = 1, the limit is attained

uniformly in x ∈ E with ‖x‖ = 1. E is said to be uniformly smooth or said to

have a uniformly Fréchet differentiable norm if the limit is attained uniformly

in x, y ∈ E with ‖x‖ = ‖y‖ = 1. E is said to have the Opial property [15] if for

each weakly convergent sequence {xn} in E with weak limit x0,

lim inf
n→∞

‖xn − x0‖ < lim inf
n→∞

‖xn − x‖

hold for all x ∈ E with x 6= x0. We remark that we may replace ‘lim inf’ by

‘lim sup’. That is, E has the Opial property if and only if for each weakly

convergent sequence {xn} in E with weak limit x0,

lim sup
n→∞

‖xn − x0‖ < lim sup
n→∞

‖xn − x‖

hold for all x ∈ E with x 6= x0.

Let E be a smooth Banach space. The duality mapping J from E into E∗ is

defined by

〈x, J(x)〉 = ‖x‖2 = ‖J(x)‖2
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for all x ∈ E. J is said to be weakly sequentially continuous at zero if for

every sequence {xn} in E which converges weakly to 0 ∈ E, {J(xn)} converges

weakly∗ to 0 ∈ E∗.

A convex subset C of a Banach space E is said to have normal structure [4]

if for every bounded convex subset K of C which contains more than one point,

there exists z ∈ K such that

sup
x∈K

‖x − z‖ < sup
x,y∈K

‖x − y‖.

We know that compact convex subsets of any Banach spaces, and closed convex

subsets of uniformly convex Banach spaces have normal structure. Turett [28]

proved that uniformly smooth Banach spaces have normal structure. Also,

Gossez and Lami Dozo [11] proved that every weakly compact convex subset C

of a Banach space with the Opial property has normal structure. We recall that

a closed convex subset C of a Banach space E is said to have the fixed point

property for nonexpansive mappings (FPP, for short) if for every bounded closed

convex subset K of C, every nonexpansive self-mapping on K has a fixed point.

So, by Kirk’s fixed point theorem [13], every weakly compact convex subset with

normal structure has FPP.

Let C and K be subsets of a Banach space E. A mapping P from C into K

is called sunny [8] if

P (Px + t(x − Px)) = Px

for x ∈ C with Px + t(x − Px) ∈ C and t ≥ 0. The following is proved in [16];

see also [26].

Lemma 1 (Reich [16]): Let E be a smooth Banach space and let C be a convex

subset of E. Let K be a subset of C and let P be a retraction from C onto K.

Then the following are equivalent:

(i) 〈x − Px, J(Px − y)〉 ≥ 0 for all x ∈ C and y ∈ K;

(ii) P is both sunny and nonexpansive.

Hence, there is at most one sunny nonexpansive retraction from C onto K.

The following lemma is essentially proved in [17]; see also [27].

Lemma 2 (Reich [17]): Let C be a nonempty closed convex subset of a Banach

space E with a uniformly Gâteaux differentiable norm. Let {xα : α ∈ D} be

a net in E and let z ∈ C. Suppose that the limits of {‖xα − y‖} exist for all

y ∈ C. Then the following are equivalent:

(i) limα∈D ‖xα − z‖ = miny∈C limα∈D ‖xα − y‖;
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(ii) lim supα∈D〈y − z, J(xα − z)〉 ≤ 0 for all y ∈ C;

(iii) lim infα∈D〈y − z, J(xα − z)〉 ≤ 0 for all y ∈ C.

Proof: Fix y ∈ C. Then there exists α1 ∈ D such that

‖xβ − y‖ ≤ lim
α∈D

‖xα − y‖ + 1

for all β ∈ D with β ≥ α1. Hence {xα : α ≥ α1} is bounded. Thus, without loss

of generality, we may assume that {xα} is bounded. We first show (i) implies

(ii). We assume that limα ‖xα − z‖ = miny∈C limα ‖xα − y‖. For y ∈ C and

t ∈ (0, 1), we have

‖xα − z‖2 = ‖xα − tz − (1 − t)y + (1 − t)(y − z)‖2

≥ ‖xα − tz − (1 − t)y‖2 + 2(1 − t)〈y − z, J(xα − tz − (1 − t)y)〉.

Since the norm of E is uniformly Gâteaux differentiable, the duality mapping

is uniformly continuous on bounded subsets of E from the strong topology of

E into the weak∗ topology of E∗; see Lemma 2.2 in Reich [19]. Therefore, for

each ε > 0, there exists t ∈ (0, 1) such that

|〈y − z, J(xα − tz − (1 − t)y) − J(xα − z)〉| < ε

for all α ∈ D. So, we have

〈y − z, J(xα − z)〉 < ε + 〈y − z, J(xα − tz − (1 − t)y)〉

≤ ε +
1

2(1 − t)
(‖xα − z‖2 − ‖xα − tz − (1 − t)y‖2)

and hence

lim sup
α∈D

〈y − z, J(xα − z)〉 ≤ ε +
1

2(1 − t)
( lim
α∈D

‖xα − z‖2

− lim
α∈D

‖xα − tz − (1 − t)y‖2)

≤ ε.

Since ε > 0 is arbitrary, we obtain (ii). It is obvious that (ii) implies (iii). We

shall prove (iii) implies (i). We assume that lim infα〈y − z, J(xα − z)〉 ≤ 0 for

all y ∈ C. Fix y ∈ C. From

‖xα − y‖2 − ‖xα − z‖2 ≥ 2〈z − y, J(xα − z)〉

= −2〈y − z, J(xα − z)〉,
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we have

( lim
α∈D

‖xα − y‖)2 − ( lim
α∈D

‖xα − z‖)2 ≥ −2 lim inf
α∈D

〈y − z, J(xα − z)〉

≥ 0.

Therefore

lim
α∈D

‖xα − z‖ ≤ lim
α∈D

‖xα − y‖.

This implies (i).

3. Lemmas

In this section, we prove some lemmas, which are used in the proofs of our main

results.

The following is essentially proved in [25].

Lemma 3 ([25]): Let C be a closed convex subset of a Banach space E. Let

{T (t) : t ≥ 0} be a one-parameter strongly continuous semigroup of nonexpan-

sive mappings on C. Let τ be a nonnegative real number. Let {αn} and {tn}

be sequences of real numbers satisfying 0 < αn < 1, 0 < τ + tn and tn 6= 0 for

n ∈ N, and limn tn = limn αn/tn = 0. Fix u ∈ C and define a sequence {un} in

C by

un = (1 − αn)T (τ + tn)un + αnu

for n ∈ N. Then the following hold:

(i) For n ∈ N,

‖T (0)un − un‖ ≤ 2αn‖T (τ + tn)un − u‖.

(ii) For n ∈ N and x ∈ C,

‖un − T (τ)x‖ ≤ αn‖T (τ + tn)un − u‖ + ‖un − x‖ + ‖T (|tn|)x − T (0)x‖.

(iii) If T (τ)x = x for some x ∈ C, then T (0)x = x.

(iv) If T (τ)x = x for some x ∈ C and 0 < tn < t, then

‖un − T (t)x‖ ≤‖un − T (0)un‖ + (tαn/tn)‖T (τ + tn)un − u‖

+ ‖un − x‖ + max{‖T (s)x− T (0)x‖ : 0 ≤ s ≤ tn}.

(v) If T (τ)x = x for some x ∈ C, tn < 0 < t < τ and −2tn < τ − t, then

‖un − T (t)x‖ ≤‖un − T (0)un‖ + (−(τ − t)αn/tn)‖T (τ + tn)un − u‖

+ ‖un − x‖ + max{‖T (s)x − T (0)x‖ : 0 ≤ s ≤ −tn}.
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Proof: It is obvious that

‖T (τ + tn)un − un‖ = αn‖T (τ + tn)un − u‖

for n ∈ N. We note that

‖T (t)x − T (t)y‖ = ‖T (t + 0)x − T (t + 0)y‖

= ‖T (t) ◦ T (0)x − T (t) ◦ T (0)y‖

≤ ‖T (0)x− T (0)y‖

for all x, y ∈ C and t ≥ 0. We have

‖T (0)un − un‖ ≤ ‖T (0)un − T (0 + τ + tn)un‖ + ‖T (τ + tn)un − un‖

= ‖T (0)un − T (0) ◦ T (τ + tn)un‖ + ‖T (τ + tn)un − un‖

≤ 2‖T (τ + tn)un − un‖

= 2αn‖T (τ + tn)un − u‖

for all n ∈ N. This is (i). We have

‖un − T (τ)x‖ ≤‖un − T (τ + tn)un‖

+ ‖T (τ + tn)un − T (τ + tn)x‖ + ‖T (τ + tn)x − T (τ)x‖

≤αn‖T (τ + tn)un − u‖ + ‖un − x‖ + ‖T (|tn|)x − T (0)x‖

for all n ∈ N and x ∈ C. This is (ii). We shall prove (iii). Since T (τ)x = x, we

have

T (0)x = T (0) ◦ T (τ)x = T (0 + τ)x = T (τ)x = x.

We shall prove (iv). From the assumption, we have

‖un − T (t)x‖ =‖un − T (t) ◦ T (τ)[t/tn]x‖

=‖un − T ([t/tn]τ + t)x‖

≤‖un − T (0)un‖

+

[t/tn]−1∑

k=0

‖T ((k + 1)(τ + tn))un − T (k(τ + tn))un‖

+ ‖T ([t/tn](τ + tn))un − T ([t/tn](τ + tn))x‖

+ ‖T ([t/tn](τ + tn))x − T ([t/tn]τ + t)x‖

≤‖un − T (0)un‖ + [t/tn]‖T (τ + tn)un − un‖

+ ‖un − x‖ + ‖T ([t/tn]tn)x − T (t)x‖

≤‖un − T (0)un‖ + [t/tn]αn‖T (τ + tn)un − u‖
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+ ‖un − x‖ + ‖T (t− [t/tn]tn)x − T (0)x‖

≤‖un − T (0)un‖ + (tαn/tn)‖T (τ + tn)un − u‖

+ ‖un − x‖ + max{‖T (s)x − T (0)x‖ : 0 ≤ s ≤ tn}.

Let us prove (v). We put pn = −tn > 0 for n ∈ N. From the assumption, we

have

‖un − T (t)x‖ =‖un − T (t) ◦ T (τ)[(τ−t)/pn]−1x‖

=‖un − T ([(τ − t)/pn]τ − τ + t)x‖

≤‖un − T (0)un‖

+

[(τ−t)/pn]−1∑

k=0

‖T ((k + 1)(τ + tn))un − T (k(τ + tn))un‖

+ ‖T ([(τ − t)/pn](τ + tn))un − T ([(τ − t)/pn](τ + tn))x‖

+ ‖T ([(τ − t)/pn](τ + tn))x − T ([(τ − t)/pn]τ − τ + t)x‖

≤‖un − T (0)un‖ + [(τ − t)/pn]‖T (τ + tn)un − un‖

+ ‖un − x‖ + ‖T (τ + [(τ − t)/pn]tn)x − T (t)x‖

=‖un − T (0)un‖ + [(τ − t)/pn]αn‖T (τ + tn)un − u‖

+ ‖un − x‖ + ‖T (τ − [(τ − t)/pn]pn)x − T (t)x‖

≤‖un − T (0)un‖ + ((τ − t)αn/pn)‖T (τ + tn)un − u‖

+ ‖un − x‖ + ‖T ((τ − t) − [(τ − t)/pn]pn)x − T (0)x‖

≤‖un − T (0)un‖ + ((τ − t)αn/pn)‖T (τ + tn)un − u‖

+ ‖un − x‖ + max{‖T (s)x− T (0)x‖ : 0 ≤ s ≤ pn}

=‖un − T (0)un‖ + (−(τ − t)αn/tn)‖T (τ + tn)un − u‖

+ ‖un − x‖ + max{‖T (s)x− T (0)x‖ : 0 ≤ s ≤ −tn}.

This completes the proof.

Using Lemma 3, we prove the following useful lemma.

Lemma 4: Let E, C, {T (t) : t ≥ 0}, τ , {αn}, {tn}, u and {un} be as in Lemma

3. Assume that {un} is bounded. Let {uν : ν ∈ D} be a subnet of {un}. Then

the following hold:

(i) lim supν ‖uν − T (τ)x‖ ≤ lim supν ‖uν − x‖ for all x ∈ C.

(ii) lim supν ‖uν − T (0)x‖ ≤ lim supν ‖uν − x‖ for all x ∈ C.

(iii) If 0 < t ≤ τ , then lim supν ‖uν − T (t)x‖ ≤ lim supν ‖T (τ − t)uν − x‖ for

all x ∈ C.
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(iv) If T (τ)x = x for some x ∈ C, then lim supν ‖uν − T (t)x‖ ≤

lim supν ‖uν − x‖ for all t ≥ 0.

Proof: From

lim
n→∞

αn = 0 and T (τ + tn)un =
1

1 − αn
un −

αn

1 − αn
u

for n ∈ N, we note that {T (τ + tn)un} is bounded. By Lemma 3 (ii), we have

lim sup
ν∈D

‖uν − T (τ)x‖ ≤ lim sup
ν∈D

(αν‖T (τ + tν)uν − u‖

+ ‖uν − x‖ + ‖T (|tν |)x − T (0)x‖)

= lim sup
ν∈D

‖uν − x‖

for all x ∈ C. This is (i). By Lemma 3 (i), we have

lim
n→∞

‖T (0)un − un‖ ≤ lim
n→∞

2αn‖T (τ + tn)un − u‖ = 0.

So, we obtain

lim sup
ν∈D

‖uν − T (0)x‖ ≤ lim sup
ν∈D

(‖uν − T (0)uν‖ + ‖T (0)uν − T (0)x‖)

≤ lim sup
ν∈D

(‖uν − T (0)uν‖ + ‖uν − x‖)

= lim sup
ν∈D

‖uν − x‖

for all x ∈ C. This is (ii). For x ∈ C and t ∈ R with 0 < t ≤ τ , we have

lim sup
ν∈D

‖uν − T (t)x‖

≤ lim sup
ν∈D

(‖uν − T (τ + tν)uν‖ + ‖T (τ + tν)uν − T (t + tν)x‖

+ ‖T (t + tν)x − T (t)x‖)

= lim sup
ν∈D

(αν‖T (τ + tν)uν − u‖ + ‖T (t + tν) ◦ T (τ − t)uν − T (t + tν)x‖

+ ‖T (t + tν)x − T (t)x‖)

≤ lim sup
ν∈D

(αν‖T (τ + tν)uν − u‖ + ‖T (τ − t)uν − x‖

+ ‖T (|tν|)x − T (0)x‖)

= lim sup
ν∈D

‖T (τ − t)uν − x‖.

This is (iii). Fix x ∈ C with T (τ)x = x. By the assumption, it is obvious that

lim sup
ν∈D

‖uν − T (τ)x‖ = lim sup
ν∈D

‖uν − x‖.



248 T. SUZUKI Isr. J. Math.

By Lemma 3 (iii), we have

lim sup
ν∈D

‖uν − T (0)x‖ = lim sup
ν∈D

‖uν − x‖.

Fix t ∈ R with t > 0 and t 6= τ . In the case of τ = 0, by Lemma 3 (i) and (iv),

we obtain

lim sup
ν∈D

‖uν − T (t)x‖

≤ lim sup
ν∈D

(‖uν − T (0)uν‖ + (tαν/tν)‖T (τ + tν)uν − u‖

+ ‖uν − x‖ + max{‖T (s)x − T (0)x‖ : 0 ≤ s ≤ tν})

= lim sup
ν∈D

‖uν − x‖.

In the case of 0 < t < τ , by Lemma 3 (iv) and (v), we have

‖uν − T (t)x‖ ≤‖uν − T (0)uν‖ + max{t, τ − t}|αν/tν |‖T (τ + tν)uν − u‖

+ ‖uν − x‖ + max{‖T (s)x− T (0)x‖ : 0 ≤ s ≤ |tν |}

≤‖uν − T (0)uν‖ + |ταν/tν |‖T (τ + tν)uν − u‖

+ ‖uν − x‖ + max{‖T (s)x− T (0)x‖ : 0 ≤ s ≤ |tν |}

for large ν ∈ D. Thus, using Lemma 3 (i), we obtain

lim sup
ν∈D

‖uν − T (t)x‖

≤ lim sup
ν∈D

(‖uν − T (0)uν‖ + |ταν/tν |‖T (τ + tν)uν − u‖

+ ‖uν − x‖ + max{‖T (s)x− T (0)x‖ : 0 ≤ s ≤ |tν |})

= lim sup
ν∈D

‖uν − x‖.

In the case of 0 < τ < t, we have

T (t)x = T (t − [t/τ ]τ + [t/τ ]τ)x = T (t− [t/τ ]τ) ◦ T (τ)[t/τ ]x

= T (t − [t/τ ]τ)x.

Hence, we obtain

lim sup
ν∈D

‖uν − T (t)x‖ = lim sup
ν∈D

‖uν − T (t − [t/τ ]τ)x‖ ≤ lim sup
ν∈D

‖uν − x‖

because 0 ≤ t − [t/τ ]τ < τ . This completes the proof.

We continue to prove lemmas.
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Lemma 5: Let E, C, {T (t) : t ≥ 0}, τ , {αn}, {tn}, u and {un} be as in Lemma

3. Assume that {un} converges strongly to some point x ∈ C. Then x is a

common fixed point of {T (t) : t ≥ 0}.

Proof: We note that {un} is bounded because {un} converges. From Lemma

4 (i), we have

lim sup
n→∞

‖un − T (τ)x‖ ≤ lim
n→∞

‖un − x‖ = 0

and hence {un} converges to T (τ)x. Therefore T (τ)x = x by the assumption.

For every t ≥ 0, from Lemma 4 (iv), we have

lim sup
n→∞

‖un − T (t)x‖ ≤ lim
n→∞

‖un − x‖ = 0

and hence {un} converges to T (t)x. Therefore T (t)x = x for all t ≥ 0. This

completes the proof.

Lemma 6: Let E, C, {T (t) : t ≥ 0}, τ , {αn}, {tn}, u and {un} be as in Lemma

3. Assume that E is smooth and z ∈ C is a common fixed point of {T (t) : t ≥ 0}.

Then

〈un − u, J(un − z)〉 ≤ 0

for all n ∈ N.

Proof: We have

αn

1 − αn
〈un − u, J(un − z)〉 = 〈T (τ + tn)un − un, J(un − z)〉

= 〈T (τ + tn)un − z, J(un − z)〉+〈z−un, J(un−z)〉

= 〈T (τ + tn)un − z, J(un − z)〉 − ‖un − z‖2

≤ ‖T (τ + tn)un − z‖‖un − z‖ − ‖un − z‖2

≤ ‖un − z‖2 − ‖un − z‖2

= 0.

Hence we obtain

〈un − u, J(un − z)〉 ≤ 0

for all n ∈ N.
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Lemma 7: Let E, C, {T (t) : t ≥ 0}, τ , {αn}, {tn}, u and {un} be as in Lemma

3. Assume that E is smooth. Then {un} has at most one cluster point.

Proof: We assume that a subsequence {uni
} of {un} converges strongly to x,

and that another subsequence {unj
} of {un} converges strongly to y. By Lemma

5, x and y are common fixed points of {T (t) : t ≥ 0}. So, by Lemma 6, we have

〈uni
− u, J(uni

− y)〉 ≤ 0

for all i ∈ N. Therefore we obtain

〈x − u, J(x − y)〉 ≤ 0.

Similarly we can prove

〈y − u, J(y − x)〉 ≤ 0.

So, we obtain

‖x − y‖2 = 〈x − y, J(x − y)〉

= 〈x − u, J(x − y)〉 + 〈u − y, J(x − y)〉

= 〈x − u, J(x − y)〉 + 〈y − u, J(y − x)〉

≤ 0.

This implies x = y. This completes the proof.

Lemma 8: Let E be a reflexive Banach space with uniformly Gâteaux differ-

entiable norm and let C be a closed convex subset of E with the fixed point

property for nonexpansive mappings. Let {T (t) : t ≥ 0}, τ , {αn}, {tn}, u and

{un} be as in Lemma 3. Assume that {T (t) : t ≥ 0} has a common fixed point.

Then {un} has a cluster point.

Remark: Our proof employs the method in the proof of Theorem 2 in Reich

[20].

Proof: Fix a common fixed point w of {T (t) : t ≥ 0}. Since

‖un − w‖ = ‖(1 − αn)T (τ + tn)un + αnu − w‖

≤ (1 − αn)‖T (τ + tn)un − w‖ + αn‖u − w‖

≤ (1 − αn)‖un − w‖ + αn‖u − w‖,

we have ‖un − w‖ ≤ ‖u − w‖ for n ∈ N. Therefore {un} is bounded. Since

‖T (t)un − w‖ ≤ ‖un − w‖
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for all t ∈ [0,∞) and n ∈ N, we have {T (t)un : t ∈ [0,∞), n ∈ N} is bounded.

Take a universal subnet {uν : ν ∈ D} of {un}. Define two continuous convex

functions f and g from C into [0,∞) by

f(x) = sup
s∈[0,∞)

lim
ν∈D

‖T (s)uν − x‖ and g(x) = lim
ν∈D

‖uν − x‖

for all x ∈ C. We note that g is well-defined because {‖uν − x‖} is a universal

net in some compact subset of R for each x ∈ C. f is also well-defined because

‖T (s)uν − x‖ ≤ ‖T (s)uν − w‖ + ‖w − x‖

≤ ‖uν − w‖ + ‖w − x‖

for all x ∈ X , s ∈ [0,∞) and ν ∈ D. From the reflexivity of E and

lim‖x‖→∞ g(x) = ∞, we can put r = minx∈C g(x) and define a nonempty weakly

compact convex subset A of C by

A = {x ∈ C : g(x) = r}.

We shall prove that {T (t) : t ≥ 0} has a common fixed point in A. For each

x ∈ A, by Lemma 4 (i), we have

r ≤ g(T (τ)x) = lim
ν∈D

‖uν − T (τ)x‖ ≤ lim
ν∈D

‖uν − x‖ = g(x) = r.

Hence A is T (τ)-invariant. So, by the hypothesis, there exists a fixed point

y ∈ A of T (τ). We note that T (t)y ∈ A for every t ≥ 0, because

r ≤ g(T (t)y) = lim
ν∈D

‖uν − T (t)y‖ ≤ lim
ν∈D

‖uν − y‖ = g(y) = r

by Lemma 4 (iv). In the case of τ = 0, we fix x ∈ A and t ≥ 0. Then we have

T (τ) ◦ T (0)x = T (τ + 0)x = T (0)x

and hence T (0)x is a fixed point of T (τ). So,

T (t)x = T (t + 0)x = T (t) ◦ T (0)x ∈ A.

Therefore A is T (t)-invariant for every t ≥ 0. By the hypothesis, there exists a

common fixed point of {T (t) : t ≥ 0} in A. In the case of τ > 0, we define a

weakly compact convex subset B of A by

B = {x ∈ C : f(x) ≤ r, g(x) = r}.
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Since T (s)y ∈ A for every s ≥ 0, we have

lim
ν∈D

‖T (s)uν − y‖ = lim
ν∈D

‖T (s)uν − T (τ)[s/τ ]+1y‖

= lim
ν∈D

‖T (s)uν − T (([s/τ ] + 1)τ)y‖

≤ lim
ν∈D

‖uν − T (([s/τ ] + 1)τ − s)y‖

= g(T (([s/τ ] + 1)τ − s)y)

= r

for every s ≥ 0. So, we have f(y) ≤ r and hence y ∈ B. Therefore B is

nonempty. We next show B is T (t)-invariant for every t ≥ 0. Fix x ∈ B. By

Lemma 4 (ii), we have

r ≤ g(T (0)x) = lim
ν∈D

‖uν − T (0)x‖ ≤ lim
ν∈D

‖uν − x‖ = g(x) = r.

We also have

lim
ν∈D

‖T (s)uν − T (0)x‖ ≤ lim
ν∈D

‖T (s)uν − x‖ ≤ f(x) ≤ r

for all s ≥ 0. Thus, f(T (0)x) ≤ r and hence T (0)x ∈ B. Fix t ∈ R with

0 < t ≤ τ . Then we have

r ≤ g(T (t)x) = lim
ν∈D

‖uν − T (t)x‖ ≤ lim
ν∈D

‖T (τ − t)uν − x‖ ≤ f(x) ≤ r

by Lemma 4 (iii). For s ∈ R with 0 ≤ s < t, since 0 < t − s ≤ τ , we have

lim
ν∈D

‖T (s)uν − T (t)x‖ ≤ lim
ν∈D

‖uν − T (t − s)x‖

≤ lim
ν∈D

‖T (τ − t + s)uν − x‖

≤ f(x) ≤ r

by Lemma 4 (iii). For s ∈ R with t ≤ s, we have

lim
ν∈D

‖T (s)uν − T (t)x‖ ≤ lim
ν∈D

‖T (s− t)uν − x‖ ≤ f(x) ≤ r.

So, we obtain f(T (t)x) ≤ r. Therefore T (t)x ∈ B. Fix t ∈ R with τ ≤ t. From

T (τ)x ∈ B, we have T (τ)2x ∈ B and hence T (τ)nx ∈ B for n ∈ N. So, we

obtain

T (t)x = T (t − [t/τ ]τ) ◦ T (τ)[t/τ ]x ∈ B.

Therefore we have shown that B is T (t)-invariant for every t ≥ 0. By the

hypothesis, there exists a common fixed point of {T (t) : t ≥ 0} in B. Since
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B ⊂ A, there exists z ∈ A such that T (t)z = z for all t ≥ 0 in both cases. We

shall prove that z is a cluster point of {un}. By Lemma 6, we have

〈uν − u, J(uν − z)〉 ≤ 0

for all ν ∈ D. On the other hand, from z ∈ A, we have

lim
ν∈D

〈u − z, J(uν − z)〉 ≤ 0

by Lemma 2. Hence

lim
ν∈D

‖uν − z‖2 = lim
ν∈D

〈uν − z, J(uν − z)〉 ≤ 0

holds. Therefore

lim inf
n→∞

‖un − z‖ ≤ lim
ν∈D

‖uν − z‖ = 0,

that is, z is a cluster point of {un}. This completes the proof.

Lemma 9: Let E, C, {T (t) : t ≥ 0}, τ , {αn}, and {tn} be as in Lemma 3.

Assume that E is smooth. For each u ∈ C, define a sequence {Q(u, n)} in C by

Q(u, n) = (1 − αn)T (τ + tn)Q(u, n) + αnu

for n ∈ N. Suppose that {Q(u, n)} converges strongly for every u ∈ C. Then

Pu = lim
n→∞

Q(u, n)

holds for every u ∈ C, where P is the unique sunny nonexpansive retraction

from C onto F (T ).

Proof: Define a mapping P from C into F (T ) by Pu = limn Q(u, n) for u ∈ C.

We shall prove that such P is the unique sunny nonexpansive retraction from C

onto F (T ). By Lemma 5, we note that Px ∈ F (T ) for all x ∈ C. For z ∈ F (T ),

since

z = (1 − αn)T (τ + tn)z + αnz

for all n ∈ N, we have Q(z, n) = z for all n ∈ N. Hence, we obtain Pz = z.

Therefore we have shown that P 2 = P , i.e., P is a retraction from C onto F (T ).

Fix x ∈ C and y ∈ F (T ). Then from Lemma 6, we have

〈Q(x, n) − x, J(Q(x, n) − y)〉 ≤ 0
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for all n ∈ N. Since {Q(x, n)} converges strongly to Px, we obtain

〈Px − x, J(Px − y)〉 ≤ 0.

So, by Lemma 1, such a mapping P is the unique sunny nonexpansive retraction

from C onto F (T ). This completes the proof.

4. Main results

In this section, we prove our main results. We put F (T ) =
⋂

t≥0 F (T (t)).

Theorem 3: Let E be a reflexive Banach space with uniformly Gâteaux dif-

ferentiable norm and let C be a closed convex subset of E with the fixed point

property for nonexpansive mappings. Let {T (t) : t ≥ 0}, τ , {αn}, {tn}, u and

{un} be as in Lemma 3. Assume that F (T ) is nonempty. Then {un} converges

strongly to Pu, where P is the unique sunny nonexpansive retraction from C

onto F (T ).

Proof: By Lemma 8, {un} has a cluster point z ∈ C. Let {unk
} be an arbitrary

subsequence of {un}. By Lemma 8 again, {unk
} has a cluster point y ∈ C, which

is also a cluster point of {un}. So, by Lemma 7, we obtain y = z. Hence, there

exists a subsequence {unkj
} of {unk

} converging strongly to z. Since {unk
} is

arbitrary, we obtain that {un} converges strongly to z ∈ C. So, by Lemma 9,

we obtain the desired result.

Theorem 4: Let E be a smooth reflexive Banach space with the Opial property

and let C be a closed convex subset of E. Assume that the duality mapping J

of E is weakly sequentially continuous at zero. Let {T (t) : t ≥ 0}, τ , {αn}, {tn},

u and {un} be as in Lemma 3. Assume that F (T ) is nonempty. Then {un}

converges strongly to Pu, where P is the unique sunny nonexpansive retraction

from C onto F (T ).

Remark: We may replace the condition of the reflexivity of E by the weaker

condition that C is locally weakly compact.

Proof: From the proof of Lemma 8, we have that {un} is bounded. Let {unk
} be

an arbitrary subsequence of {un}. Since E is reflexive, there exists a subsequence

{unkj
} of {unk

} which converges weakly to some point z ∈ C. We put zj = unkj
,

βj = αnkj
and sj = tnkj

for j ∈ N. By Lemma 4 (i), we have

lim sup
j→∞

‖zj − T (τ)z‖ ≤ lim sup
j→∞

‖zj − z‖.
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Since E has the Opial property, we obtain T (τ)z = z. By Lemma 4 (iv), we

have

lim sup
j→∞

‖zj − T (t)z‖ ≤ lim sup
j→∞

‖zj − z‖

for all t ≥ 0. Therefore z is a common fixed point of {T (t) : t ≥ 0}. Using

Lemma 6, we have

‖zj − z‖2 = 〈zj − z, J(zj − z)〉

= 〈zj − u, J(zj − z)〉 + 〈u − z, J(zj − z)〉

≤ 〈u − z, J(zj − z)〉

for all j ∈ N. Since J is weakly sequentially continuous at zero, we obtain that

{zj} converges strongly to z. By Lemma 7, we know that {un} has at most

one cluster point. So, since {unk
} is an arbitrary subsequence of {un}, we have

that {un} itself converges strongly to z. So, by Lemma 9, we obtain the desired

result.

By Theorems 3 and 4, we obtain the following.

Theorem 5: Let C be a weakly compact convex subset of a Banach space E.

Assume that either of the following holds:

• E is uniformly convex with uniformly Gâteaux differentiable norm;

• E is uniformly smooth; or

• E is a smooth Banach space with the Opial property and the duality

mapping J of E is weakly sequentially continuous at zero.

Let {T (t) : t ≥ 0} be a one-parameter strongly continuous semigroup of non-

expansive mappings on C. Let τ be a nonnegative real number. Let {αn} and

{tn} be sequences of real numbers satisfying 0 < αn < 1, 0 < τ + tn and tn 6= 0

for n ∈ N, and limn tn = limn αn/tn = 0. Fix u ∈ C and define a sequence {un}

in C by

un = (1 − αn)T (τ + tn)un + αnu

for n ∈ N. Then {un} converges strongly to Pu, where P is the unique sunny

nonexpansive retraction from C onto F (T ).
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